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Senvol recently led an additive manufacturing program 
for the U.S. Army. Image of one of the builds, done 
by EWI, using 17-4 PH stainless steel on an EOS M290 
machine. Courtesy of Annie Wang, Olga Elsieeva, and 
William E. Frazier, FASM.

On the Cover:

56
3D PRINTSHOP
Unique materials designed for 3D 
printing are described in this issue.

10
MACHINE LEARNING
Scientists are using machine learning  
to automate x-ray diffraction analysis 
and to extract data from videos of  
their experiments.



1 3
ADVAN

CED
 M

ATERIALS &
 PRO

CESSES | APRIL 2023

MACHINE LEARNING: 
PROGRESS 
TOWARD ADDITIVE 
MANUFACTURING 
MATERIALS PROPERTY 
ALLOWABLES
DEVELOPMENT
Annie Wang and Zach Simkin
Senvol LLC, New York
William E. Frazier, FASM* 
Pilgrim Consulting LLC, Lusby, Maryland

Results from two research projects 
show machine learning to be a cost 
e� ective and fl exible way to accelerate 
the process of mechanical property 
allowables development.

*Member of ASM International
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Fig. 1 — Machine learning technology stack.

The application of machine  
learning (ML) in the field of  
materials science and engineer-

ing has rapidly matured over the past 
decade. However, the full potential  
of this methodology has yet to be  
unleashed. This article starts with a 
succinct synopsis of ML and explores 
its many diverse characteristics. The 
results of two recently completed  
research projects investigating the  
potential use of ML to establish additive 
manufacturing (AM) materials property  
allowables are described. Although 
continued research and development 
(R&D) work is required, the results are 
very promising. The authors’ thoughts 
on the maturation of ML for this appli-
cation are then delineated.

BACKGROUND
The technologies involved in ML 

are illustrated in Fig. 1 and may be 
conveniently divided into seven broad 
areas: (i) data, (ii) ML categories, (iii) en-
vironment/infrastructure, (iv) data sci-
ence and ML libraries, (v) algorithms,  
(vi) quality, and (vii) models. For the 
qualification of AM materials, the goal of 
ML is the development of accurate pre-
dictive models. Models may be thought 
of as human artifacts, i.e., representa-
tions of reality within prescribed limits.

The generation of ML models is 
based on the analysis of data. AM is a 
digitally intense process 
generating an abundance 
of data. Data quality, 
type, and quantity is im-
portant, and data must 
be scrubbed to ensure its 
pedigree and provenance. 
This is not trivial and can 
consume 85% of a data  
scientist’s time[1,2].  The 
type of data (continuous 
or categorical/discrete) 
must be established.  
Further, prior to deciding  
upon an ML approach, the 
quantity of data needed  
to derive a meaningful 
model and the required 
data environment and  
infrastructure should be 
considered carefully.

Mathematical algorithms are then 
used to transform data into models. 
There are many algorithms used in ML, 
and each has their appropriate appli-
cations, strengths, and weaknesses.  
Table 1 provides a representative  
partial list of ML algorithms and their 
notional characteristics[3,4]. Common 
types of algorithms include regression, 
neural nets (NN), deep learning (DL), 
decision trees (DT), k nearest neighbors 
(KNN), and support vector machines 
(SVM)[5]. This arti-
cle discusses re-
gression, which 
has broad appli-
cation, and poly-
nomial regression 
algorithms, which 
were used in the 
research reported 
by the authors in 
this work.

Regression 
analysis encom-
passes a large  
variety of statis-
tical methods to 
estimate the rela-
tionship between 
input variables 
and their asso-
ciated features. 
Typical regression 
methods include 

a) linear regression, b) multilinear  
regression, c) polynomial regression, 
and d) logistic regression. Regression 
analysis is not a new technique but its 
application to big data sets with large 
numbers of independent variables to 
establish (with statistical confidence) a 
set of dependent materials properties 
allowables is novel.

ML can be applied to AM in a variety 
 of ways in varying stages of maturation.  
Currently the lowest hanging fruit 

TABLE 1 — GENERAL CHARACTERISTICS OF MACHINE LEARNING ALGORITHM[3,4]

Algorithm Algorithm 
type*

Learning 
type**

Data  
required

Computational 
time to learn

Linear regression R Low Low

Polynomial regression R Low Low

Logistic regression C Low Low

Naïve Bayes C S Low Low

Neural network C S, U, R High High

Deep learning C S, U, R High High

Decision tree C & R S Low Low

k-Nearest neighbor I I Low Low

Support vector machine C S Low High

k-Means C U Low

*Type of algorithm: Regression (R), Classification (C), Instance (I) 
**Learning types: Supervised (S), Unsupervised (U), Reinforced (R), Instance (I)
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(applications that are most mature 
today) are AM process optimization  
and certain aspects of process manage-
ment and control. Once an ML model is 
trained, AM users can interrogate the 
model with various questions, such as 
“what process parameter set should 
be used if we require ultimate tensile 
strength of Y?” or “what is the trade-
off between the different process pa-
rameter inputs?” or “which process 
parameter inputs have a large influ-
ence on part density?” This allows the 
AM user to rapidly develop optimized  
process parameters. Additionally, by 
monitoring the AM manufacturing  
process through testing coupon  
samples at regular intervals, the  
model can be further trained to detect 
process drift as a function of time or  
other factors (e.g., room temperature, 
humidity, personnel).

More sophisticated but far less 
mature applications for process  
management and control could come 
from applying ML to real-time sensory 
inputs or measurements, such as using  
computer vision to monitor in-situ  
sensors, feature engineering of 
time-series based measurements or 
training a model to identify features 
in visual input (e.g., CT scans, micro-
structure images).

In the medium to long term, ML 
could be used to develop methods 
for allowable calculations and assist  
in qualification, requalification, or  
delta qualification. While the concept 
of ML allowables is novel, it could be  
useful today as a “gate check” to help  
AM users decide whether or not a  
certain process is stable enough to  
warrant the time and resources need-
ed to develop conventional allowables 
using the Metallic Materials Properties  
Development and Standardization 
(MMPDS) or Composite Materials Hand-
book-17 (CMH-17) methods. In other 
words, ML allowables today could be an 
estimate of conventional allowables yet 
to be developed.

The ML approach could also be 
used to demonstrate equivalency, 
which would greatly aid with requal-
ification or delta qualification. The  

ML approach allows the issue of equiv-
alency to be easily inverted. Instead 
of fixing the process parameters and  
expecting future AM machines to 
achieve the same requirements with a 
frozen set of process parameters, the 
AM user can fix the requirements and 
ask the ML model to determine what 
process parameter window on the new 
AM machine would allow the AM user to 
achieve the desired requirements.

ML MATERIALS PROPERTY 
ALLOWABLES DEVELOPMENT

Introduction. Senvol recently  
completed two programs that focused 
on demonstrating an ML-enabled  
approach to support materials allow-
ables development. The first project 
was an Army program [funded via the 
Advanced Manufacturing, Materials, 
and Processes (AMMP) consortium]  
focused on stainless steel 17-4PH.  
Project members included Senvol, 
Lockheed Martin Missiles & Fire Control, 
EWI, Pilgrim Consulting, and Battelle. 
The second program was an America  
Makes program focused on a flame  
retardant polymer, where the project  
members were Senvol, WSU-NIAR, 
Northrop Grumman, Stratasys Direct 
Manufacturing, and Pilgrim Consulting.

Both projects completed a side-
by-side comparison that evaluated an 
ML-enabled approach to allowables  
development. Results showed that an 
ML-based approach can be more flexible,  
cost-effective, time-effective, and 
equivalent to the conventional (e.g., 
MMPDS in the case of metals, and CMH-
17 in the case of polymers) approach to 
materials allowables calculation.

Despite the potential that AM  
offers, the rate of AM adoption is very 
slow due in part to the high cost and 
time associated with material allow-
ables development. Furthermore, AM is 
an advanced manufacturing technique  
that is process-intensive by definition; 
the creation of the materials and the part 
occurs in the same process. As such:
•	 Conventional materials allowables 

development binds the user to a 
limited set of machines and build 
parameters.

•	 The current allowables paradigm 
freezes the technology and user  
in time.

•	 Deviations or multiple allowables 
require generation of large amounts 
of additional data.

This results in an AM process that 
is not only costly and time-consuming 
to implement the first time, but equally 
costly and time-consuming to maintain 
in the long run when there are inevitably  
changes to the AM process.

There were two primary objectives 
of these two projects.

1.   Develop and demonstrate a  
new approach to calculate materials  
allowables that is not a fixed-point 
solution.
•	 The projects developed an 

approach to AM allowables that 
leverages the digital nature 
of AM and leverages machine 
learning (ML).

2.  Demonstrate an ML-enabled ap-
proach to statistically substantiat-
ing materials property predictions 
across an entire parameter range.
•	 An ML approach is extremely 

flexible and is able to handle any 
change to the AM process, thus 
providing materials property 
predictions even when deviat-
ing from the point at which an 
allowable was developed.

These two projects demonstrated 
that:
1. An ML approach enables a user to 

do parameter development and 
materials allowables development 
in parallel using the exact same 
empirical dataset.

2. An ML approach enables a user to 
make statistically substantiated 
predictions about performance 
and scatter everywhere in a given 
parameter range. This is particularly 
useful if a user needs to make parts 
using different parameters (e.g., 
one parameter set for performance 
reasons, and a different parameter 
set for efficiency/cost reasons).

3. ML allowables predicted materials 
behavior consistently with the  
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ables (i.e., ML allowables were 
just as accurate as conventionally 
developed ones).

These projects also included a 
validation portion, which included  
a performance assessment of the ML 
allowables against the conventional  
allowables, as well as a cost-benefit 
assessment.

While the word “allowable” is used 
in this article, the authors wish to high-
light an important caveat, which is that 

no true allowables were generated in ei-
ther of the two projects discussed. First, 
the term “ML allowable” is used for con-
venience, however it should be noted 
that an ML-based approach is not an 
approved methodology for allowable  
development. Second, due to cost and 
programmatic constraints, several  
simplifying decisions needed to be made 
in generating the conventional allow-
ables based on MMPDS or CMH-17 guide-
lines (e.g., only one lot of powder was 
used in each project).

Project Steps. The project steps 
for the two projects are summarized in 
Table 2.

Results and Discussion. The 
ML approach is vastly different from 
the conventional MMPDS or CMH-17  
approaches to materials allowables. 
To illustrate, imagine a parameter 
space, such as the three-dimension-
al parameter space in Fig. 2, consist-
ing of parameters A, B, and C. The ML 
approach can be applied to n-dimen-
sions and is particularly suited for high- 

TABLE 2 —  ADDITIVE MANUFACTURING ML ALLOWABLES PROJECT SUMMARIES
U.S. Army funded (AMMP Consortium) 
project developing ML-allowables on 

stainless steel 17-4 PH

America Makes project developing  
ML-allowables on fire retardant polymer

Machine and material
Machine: EOS M290

Material: Stainless steel 17-4 PH
Machine: 3D Systems sPro60

Material: Nylon 11 flame retardant (FR-106)

Step 1: Build and collect 
training data to develop 

ML model

ML software was used for the DOE  
(design of experiments). 

293 vertical coupons over 3 builds. All coupons 
were built on a single AM machine. Each coupon 

was a different parameter set.

ML software was used for the DOE  
(design of experiments). 

6 builds of 50 coupons each (i.e., 300 coupons 
total). Half of the builds were on machine 1,  
half were on machine 2. Each coupon was a 

different parameter set.

Step 2: Select two 
optimized parameters 
based on two different 

engineering requirements

ML model was the basis from which two optimized 
parameters were selected. Parameter set A is 

optimal to achieve requirement A. Parameter set B 
is optimal to achieve requirement B.

ML model was the basis from which two optimized 
parameters were selected. Parameter set A is 

optimal to achieve requirement A. Parameter set B 
is optimal to achieve requirement B.

Step 3: Calculate ML 
allowables

ML model was used to calculate  
ML allowable A at parameter set A and  

ML allowable B at parameter set B.

ML model was used to calculate  
ML allowable A at parameter set A and  

ML allowable B at parameter set B.

Step 4: Develop 
conventional allowables

Followed MMPDS S-basis guidelines: 
Parameter set A: Three builds with 10 coupons  

per build (30 coupons total)
Parameter set B: Three builds with 10 coupons  

per build (30 coupons total).

Followed CMH-17 B-basis robust sampling 
guidelines:

Parameter set A: 10 builds of five coupons each  
(50 coupons total)

Parameter set B: 10 builds of three coupons each 
(30 coupons total).

Step 5: Calculate 
conventional allowables

Based on MMPDs guidelines, calculate S-basis 
allowable A and S-basis allowable B.

Based on CMH-17 guidelines, calculate B-basis 
allowable A and B-basis allowable B.

Step 6: Build validation 
build (i.e., previously 

unseen data) 

Four representative parts total. 60 witness 
coupons: 30 built with ML-selected parameter  

set A, 30 built with ML-selected parameter set B.

Eight representative parts total. 38 witness 
coupons total: 15 built with ML-selected parameter 

set A, 15 built with ML-selected parameter set B.

Step 7: Analysis and 
comparison 

Accuracy and usability of ML allowables A and B 
was compared against those of  

MMPDS S-basis allowables A and B using  
data from the validation build.

Accuracy and usability of ML allowables A and B 
was compared against those of  

CMH-17 B-basis allowables A and B using  
data from the validation build.
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dimensional problems (e.g., 4  
dimensions and above), but for  
illustrative purposes only three- 
dimensional space is easiest to 
imagine.

In the conventional approach,  
many samples are collected at 
only one parameter point (illus-
trated by the red dot in Fig. 2a). 
In the ML approach (illustrated  
by the graph in Fig. 2b), the ML 
software was used to design the 
design of experiments (DOE) that 
consist of each of these blue dots. 
Each of these blue dots was built 
using a different parameter set. 
Each of the blue dots was used 
to develop a surrogate model  
(sometimes called a response 
surface) of the AM process. The 
ML model can point to parameter 
A and parameter B even though 
no empirical data has been col-
lected at these dots.

Each of these blue dots is 
not just a point but is a process-
ing window. The ML approach 
enables the user to conduct 
parameter development and 
allowables development simul-
taneously. In other words, the  
blue dots inform the parameter  
optimization and allow the  
AM user to select the optimal  
parameters to achieve the goals, 
but the blue dots also allow 
the AM user to make statisti-
cally substantiated predictions 
about the performance and the 
coefficient of variation of those  
predictions at any given point 

or process window. Hence, ML al-
lowables could be calculated at 
the red dot for Goal A and done a  
second time at the pink dot for Goal B.

In comparing ML allowables  
against conventionally developed 
MMPDS or CMH-17 ones, the ML allow-
ables predicted materials behavior 
consistently with the conventionally  
developed ones. In other words, ML 
allowables are just as accurate as those 
conventionally developed.

Table 3 presents an example  
comparing ML allowables against con-
ventional MMPDS S-basis allowables  
for parameter A and B from the AMMP 
project on stainless steel 17-4 PH.

It is critical to recognize that the  
ML approach enables a user to do  
parameter development and materials  
allowables development in parallel  
using the exact same empirical data-
set. Simultaneously, the single set of 
training data that is gathered in the 
ML approach can be used to generate 
an infinite number of allowables, thus 
the cost-benefit becomes even more  
favorable toward the ML approach if 
more than one allowable is generated.

Figure 3 provides a chart showing  
the total cost of allowable develop-
ment (y-axis) for various quantities of 
allowables. For the purposes of this 
chart, the conventional MMPDS S-basis  
allowables were assumed to be devel-
oped using the minimum quantity of 
coupons required as per MMPDS (i.e., 
30 coupons).

MATURATION OF ML FOR AM  
ALLOWABLES DEVELOPMENT

The future state of AM 
of mechanical property al-
lowables development and  
AM process qualification is 
likely to involve the inte-
grated use of the following 
technologies.

•	 Integrated computa-
tional materials engineer-
ing (ICME)
•	 Machine learning 
(ML) and artificial intelli-
gence (AI)

Fig. 2 — (a) Conventional allowable development;  
X (e.g., 30) samples at one parameter set (e.g., A1, 
B1, C1), so all 30 samples are repeats of the same 
parameter set; (b) ML approach; Y samples all over  
and evenly distributed over the parameter space; 
S-basis “ML-allowables” can be calculated at any 
parameter set even where there’s no empirical data 
(e.g., red, pink dots).

TABLE 3 — CALCULATED MACHINE LEARNING ALLOWABLES RESULTS COMPARED TO  
CONVENTIONAL APPROACH

PARAMETER A — OPTIMIZED TO PRIORITIZE HIGH TENSILE STRENGTH OVER PRINT SPEED

ML allowable (MPa) MMPDS allowables (MPa)

Ultimate tensile strength 154.9 159.4

Yield strength 153.0 153.2

PARAMETER B — OPTIMIZED TO BALANCE BETWEEN GOOD TENSILE STRENGTH AND FASTER PRINT SPEED

Ultimate tensile strength 160.6 164.4

Yield strength 156.5 157.1

(a)

(b)
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•	 In situ process sensors  
and feed-forward, adaptive process 
controls

•	 Standards (process, control, sensor, 
data fusion, and informatics)

•	 Testing (statistically substantiated 
data)

While there appears to be com-
munity convergence on the tools to be 
used, there are countless approaches to 
their unified integration being explored.

The application of these tools to 
accelerate AM mechanical property  
allowables requires a paradigm shift 
in our thinking. The conventional  
approach to mechanical property  
allowables development is to a) freeze 
the materials process, b) produce mul-
tiple lots and heats, and c) conduct  

extensive mechanical property tests 
to generate statistically substantiated  
properties[6]. ML learning permits the 
concomitant assessment of AM key 
process parameters on a range of  
mechanical properties of interest. It thus 
provides both a means of converging 
on a set of optimal process parameters  
and establishing the robustness (sen-
sitivity of properties to changes in pro-
cess variables) of mechanical properties 
(Fig. 4). Within the “defect free” quality 
process envelope, process regions (A 
and B) can be identified to achieve a  
desired set of mechanical properties. 

After ML has converged on a  
processing window to achieve the  
desired set of mechanical proper-
ties, ICME tools could be employed to  

further refine the processing window 
prior to investing in the development of 
statistically substantiated mechanical 
properties. The consistent and repro-
ducible production of quality materi-
als could then be ensured by employing 
adaptive, feedforward process controls. 
This would require real time data and 
analysis of information obtained from 
in situ sensors to be used in conjunction 
with predictive ICME tools.

For AM, this methodology has  
several advantages to “freezing” a 
process. Operating within the quality  
processing envelope helps ensure 
a defect-free material. Machine-to- 
machine or manufacturer-to-manufac-
turer qualification is made easier as one 
needs only to ensure that the process  
is operating in the predetermined  
quality envelope. The identification 
of optimal processing parameters  
required to achieve a new set of  
customer materials property require-
ments is made easier as the entire  
process space has been previously 
mapped to mechanical performance.

SUMMARY
Within this article, the authors  

provided a brief introduction to  
machine learning. ML allows engineers  
and scientists to tease out causal  
relationships from complex data sets.  
To develop a functional model, data  
scientists must first thoroughly scrub 
the data to ensure pedigree, provenance,  
quality, and form. Appropriate algor- 
ithms can then be applied to the  
data sets to develop a useful ML model, 
i.e., a representation of reality.

The potential of ML to accelerate 
the process of mechanical property  
allowables development was demon-
strated in two recently completed, nar-
rowly scoped projects. ML mechanical 
property allowables for laser powder 
bed fusion (LPBF) of a metal (17-4PH 
stainless steel) and a polymer (Nylon) 
were shown to be comparable to a con-
ventional statistical based approach. 
The ML approach was shown to reduce 
the cost and time of an AM product  
deployment. The AMMP project demon-
strated that development of two ML  

Fig. 3 — Cost comparison of machine learning and conventional allowables development.

Fig. 4 — Quality AM processing envelope in n-dimensional space for a hypothetical alloy.
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allowables was 58.7% less expensive  
than developing two conventional  
S-Basis MMPDS allowables. Using
the exact same empirical dataset, ML 
allows the concomitant development of 
AM process parameters and materials 
allowables. The training data informs 
parameter optimization and allows
for making statistically substantiated 
predictions about mechanical perfor-
mance. Continued maturation of the
technology is required, and a possible
path forward posited.

The key takeaway is that the ML 
approach has the potential to be just as 
accurate as the conventional approach 
while also being much more cost- 
effective and flexible. ~AM&P
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